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Abstract—A material with randomly varying properties in creep is considered, A discrete hypersiatic
structure, with one redundant member, and a thick-walled cylinder with internal pressure under stationary
creep are studied. The expected values and the variances of the stresses and deformation rates ate
determined with a perturbation technique.

I. INTRODUCTION

During creep testing at constant stress levels the scatter in creep deformation rate and creep
rupture time, is large for most materials. Experimental observations of local variations in
deformation rate are presented by Chang and Grant{1]. They observed creep rates that varied
along the specimen. Walles{2] gave the scatter between different test specimens a thorough
statistical treatment. Observations from a number of creep tests{3], show that the shape of the
distribution function of the measured strain rate is independent of the stress level. Walles has
shown that the scatter is log-normal distributed, i.e. the logarithm of the strain rate is normal
distributed. From these observations follow. assuming Norton's creep law € = Bo" is valid, that
the scatter originates from variations in B and that n can be treated as a constant.

Bjorkenstam[4, 5] studied the scatter due to load variations. He considered a load consisting
of a constant part and a superposed randomly varying small part. The expected values and the
variances of the stresses and the deformation rates for some structural elements were
determined. The material was assumed to obey the Hooke-Norton constitutive equation
é=g/E+ Bo".

Broberg and Westlund 6] assumed that the scatter was due to a random spatial variation of
material properties in creep. The expected value and variance of the deformation rate of an
ordinary test specimen under steady state creep were determined. A volume effect was shown
to exist, viz. the variance of the deformation rate was shown to decrease with increased
specimen size. The material was assumed to obey a modified Hooke-Norton constitutive
equation as suggested by Broberg[3]. The same formulation was shown to be valid for a
specimen in a random temperature field, for a material with the temperature dependence
suggested by Dorn[7].

In the present paper the influence of random material properties on the deformation rate of
a simple hyperstatic structure and a thick-walled cylinder under internal pressure is analysed.
The scatter is assumed to be small, whereby the stresses may be solved by a perturbation
technique used by Bjorkenstam[4, 5]. The expected value and variance of the deformation rate
are determined.

2. MODEL MATERIAL

2.1 Uniaxial behaviour
A material with random properties under creep is considered. The total strain is expressed
as an elastic part and a creep part

€x)=o(xX)|E+€.(x) (h
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where x is the axial coordinate. The creep strain rate is given by the modified Norton creep
equation

é.(x) = éf1 + aH (x)] (Ui) . 2)

n

Here o, is a constant introduced for dimensional purposes and é; and n are material constants.
Moreover aH (x) is a normal distributed ergodic stochastic process, with the property |aH (x)| < 1.
A Markov type process is assumed.

Steady state creep conditions are considered. The total strain rate is then given by eqn (2).
The statistical properties, i.e. the expected value, variance and autocorrelation, of the strain
rate can be deduced from the known statistical properties of aH (see Broberg and Westlund[6])

)

ElaH] =« 3
Var [aH] =2a + O(a? 4
R.H(xg) = 2a e #% + O(a?). (5)

Here x, is the distance between the two points considered and B is a material constant.
The statistical properties of the mean strain rate

é = éll+aH,) (1) (6)
Op

where

l L
HL—ZL H(x)dx (N

are deduced from the statistical properties of aH;. From eqns (3)-(5) follow

L
E[aHL]=%f ElaH(x))dx =« (8

0
Var [aH ] =2aV(BL)+ O(a’) (9

where
"
- _ L

V(BL) W(BL l+e ") (10)

2.2 Multiaxial behaviour

Due to the manufacturing process, the material properties in creep will be inhomogeneous.
Often a variation of material properties in one principal direction, denoted by x,, will dominate.
For cylindrical tubes this may be the radial direction.

The principal creep strain rates are postulated as

3[0-e(x|v X2, x3)]" si(xh X2, X})

€i( Xy, X2, X;):é(); (X1 X X})[]'faH(X\)]

n

(i=1.2.3) (11)

where s; and o, are the stress deviator and the Mises effective stress.
Steady state creep conditions are considered. The total strain rate is then given by eqn (11).
The statistical properties of aH(x,) are the same as in eqns (3)-(5).

3. HYPERSTATIC BAR SYSTEMS

3.1 Basic equations
A general hyperstatic structure with one redundant member, e.g. as in Fig. 1. is considered.
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Fig. 1. Simple hyperstatic bar system.
The equilibrium condition can be written
&101+ &00= Pl A, (12)
Here P is a load, A, is a reference area and £, and ¢, are geometrical constants depending on
the structural shape.
The equation of compatibility can be written
n1€L1 = 262 = Al L. (13
Here A is a deflection under the load P, L, is a reference length and 7, and 7, are geometrical
constants depending on the structural shape.
Insertion of the constitutive eqn (6) yields
A/Lo= méo(1 + aHp X a1[on)" = maéol 1 + aHp ) om0 )" (14)
Introduction of the non-dimensional quantities
si=ofo, (i=1,2), F=PlAw, A=A/Lw (15)

transforms eqns (12) and (14) to

&isi+bs,=F (16)
A =7]|(1+(1HL|)S1":1]2(1+(1HL2)52". ”7)

3.2 Stresses and deformation rate
The stresses are written in the form of a series

§i = Sio+ asi + a’sp+ 0(@®) (i=1,2). (18)

Insertion in eqns (16) and (17), and identification of terms of equal order in a, yield

Eisnt basn=F (19)
Eisi+ &asa =0 (20)
&isi2t €250 =0 2n

MSTo = M2520 (22)

$21

N
H,_|+ni=H,_2+n—"
Sio 520
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s n—=17su\"  S;2 S n=17s01\  s»
V—H“—f' 5 J +%=fHL3+—,)'— —I +—=.
S0 - Mg S0 S 4 $20 520

The deformation rate is

3 = mm’b[l +ngm+aH“+nm‘”aH“ s, n(n - l)(gsj) J+ O,

Sto Sto St 2 Sio

The stresses are solved from egns (19)-(24) as

F Mn
S0 =7 U.j=1.2 i=#])
fmz‘ + &y

o AHy — HidswSwé

B '. h— .2: . .
Sin n(& 810+ &25%) (iLj=1 i j)

3’1053051' _ ) 2
TR i g“:‘rm)‘:{“" Dsio+ (n+ DEsjl( Hy )

S =

+2&si0— sV HyHy — [(n + Dsip+ (n — DésiplHy)p (=120 =),

The stresses of eqn (26) are recognized as the solution for the scatter-free material.

3.3 The statistical properties of stresses and deformation rate

(25)

(28)

The expected values and variances of the stresses and deformation rate, deduced from eqns (8)

and (9) and (25)-(28). are
Elsi] = sy (i=1,2)
Var [s;4] =0 (i=12)
Elasi| = O(a™ (i=1.2)

2 Swsed  \
Var |as; =_,(_10_L~) 4V 2 P 1 Y4
lasi) = -5 st brvm alVi+V)+0(a®) (i,j=1.2:i%))
where
V= V(BL)
20— SiSée Ty <1V,
E[a S,:] _nz‘—“({:lsm+'£2‘S~"20)2{[(n 1)§,S,()+(n+ ])é}bl()] V,
~[n+ Déso+ (1= DS VIO (Lj=1.20 0= )
Var [ sp] = Ota?) (i=1.2)
and

Pl o o+l LSSy : _l} 2
E[/\]—'th lo{l'{"a[] n ‘___"—‘—‘(§ISIO+§2S:ZO)2(V|+ v:)i +O(a )

2.2n

Var [/\] = 27)| Sma{

§|2~Yf()+2£1§75’105’0 , §,3S§,0 ] 5
il A == sVal+ Ota).
(&1S10+ €a820)° l (€150t &520) 7 *

Insertion of egn (26) vields for the deformation rate

3 F"nlnl { l— n+1 §1§27)I”nn"”" :‘ 7
EX]= o 1+ af 1 - MRVt Y, }+o ?)
M (&' + &m'™) a‘ (Ema" + &y ) (e

n
. 2F?.nn|'.’n:3 [gllnzﬂn + 2§|§2nl”nn2”" 6227] 2/n
Var A= n m2n & n ny\2 |4 + : n.2 °J+
(A] (&ma" + &Y (&ma™" + &Y l (§|77:”"+§27h]")"v’ Ota

(29)
30
(31)

(32)

(33}

(34)
(35)

{36)

(37)

(38)

(39
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The second and the third factor, of the second term inside the square bracket of eqn (38),
represent the influence of the structural shape and size. The two terms in the square bracket of

eqn (39) are products of structural shape and size factor.

3.4 Application to a simple structure
The structure in Fig. 1 is considered. The geometrical constants are

G=6£=10 m=1L m=«

Equations (38) and (39) yield

. F'x n+l k" 2
E[’\]“(1+K|In)n{1+a[l_ " (]+K|7n)z(vl+vz)]}+0(a)

. F211K2 K21n+2KI/n K2/n +2Kl/n s
Var ()= 2t e {2 v [1 -5 [+ o

(40)

4D

(42)

The expected value and variance are always smaller for the structure than for the simple

specimen with load F/(1+«~"") and length L,. This enables conservative design.

The structural shape and size factors can be read from Figs. 2 and 3.

0.75
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n=3
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: (1ex1/ny2
|
|
| n=t
!
0.25 ' :“;’
| — M_1/n
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Fig. 2. Structural shape factors.
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Fig. 3. Structural size factor.
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When « — | the expected value tends to

E[X]=(F/2)"{l+a[l—n;1%V1]}+O[az) (43)

which is always smaller than the expected value of the single specimen with load F2
E[A]=(F2"(1 + a)+ O(a?). (44)

This is due to the two bars being more constrained than the single specimen. They are forced to
have the same total deformation rate, though the local deformation rates can differ between
them. When L, is large enough eqn (43) converges towards eqn (44).

The variance tends to

Var [A] = 2(F12*"aV, + O(a?) (45)

which is identical with the variance of the single specimen with load FJ2.
It is seen from eqns (41) to (45) that the expected value and the variance, of the deformation
rate, are always smaller for the structure then for the isostatic structural elements.

4. THICK-WALLED CYLINDER
4.1 Basic equations
A thick-walled cylinder is considered subjected to internal pressure p and zero axial strain.
With standard assumptions (isotropy, isochoric deformation) and standard notation (radial
coordinate r, circumferential coordinate ¢) the equations of equilibrium and compatibility are

Ty =%(ro',) (46)
€ =dg;(re¢). 47)

The constitutive equation (11) takes the forms

e‘,=e’0§(5ﬂ> 314 aH(n) (48)
2\o,/) 0.
3o\
e¢=eoi(—%) g_%[l-I»aH(r)]. (49)

The stress deviators and the Mises effective stress are

S¢=—s,=%(0¢—(r,) (50)
0‘3:'-%(0',1,—0',). (5hH
The radial displacement rate is
u=réy=Clr. (52)
Insertion of eqns (48)-(51) in eqn (47) yields
m(l+aH)os—a)+raH'(c;—a,)+2(1+aH)os—a,)=0 (53)

where the prime denotes d/dr.
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Elimination of o, with the aid of eqn (46) gives a differential equation for the radial stress
r+ al)et+ 2 1+ aH)o+ Lol 0l =0 (54)

with the boundary conditions
oa)=-p; odb)=0. (55)
4.2 Stresses and displacement rate
The radial stress is written in the form of a series
g, = 0t ao, + a’d,+ Oa’). (56)

Insertion in eqn (54), and identification of terms of equal order in a, yield three differential
equations that can be solved successively

+
ra’,’0+2 Loo=0 (57)
" 2 + n ! r r r
ron = =00 = ;H T (58)
s 2+n ro., , r
rop+ (T,-2=—;H(T,1+;H'HO’:(). (59)
The solution of eqn (57) is
o= Ag— BO’AZ/"- (60)
The boundary conditions
grola)=—p: o.b)=0 (61).
give
Bo=pl(a "~ b~") (62)
Ap=b"""B,, (63)
Insertion of &, in eqn (58) gives
—afnl d n ' 2B ' —eln
e ) = —?QH r (64)
with the solution
a',,=A|—B|r_2”'—%?y°f HE ' g, (65)
The boundary conditions
onla)=oa,(b)=0 (66)
yield
= 2BO b —1-2/n
B, T 5 f H¢ dé¢ (67)

A;=Ba7¥" (68)
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Insertion of oy and o}, in eqn (59) gives

r ”
dr

with the solution

2 2 2 +
~2/n _d_(ol rl ../n)= BO(: 1)

HrHr~2/n - z—ntlH'r_:/"

0',3=A2—Bzr_2/"+B°(:+ I)J' H2g1m dg_z‘:'l{glf He ' de.

The boundary conditions

yield

Bo(" + ”
n

BZ=—_(——"—/;1‘—7)_—_"771_

Az = BzaAy".

o

2(“) = Urz(b) =0

b
f HZf-Iv’_’/n d£+

2B,

b
Wf H§~I~2/n df

The stress of eqn (60) is recognized as the solution for the scatter-free material.
The radial stress is

’) r
~Bor "+ ad;~aBir "~ 5B, f aHE " dE +a’A

n+1

The circumferential stress can be solved from e.g. (46) as

ZBO -
Op—0,=10,= p 2n

1+

ozBl

B,

1 asz

——aH +——
n

By |

(n+1)

=2
- aszr fn

r 7 r R
3 f (aH)Y¢'7" df—%&f aHE M de+ O,

Equations (49)(52) and eqn (75) yield for the displacement rate

where

11=§;9(1+aH)[1+

aB,
By

,
aH a°B, n+

0

B,

Ve

P4

V3B,

ho,

A series development of the square bracket yields

0= Ch[1+n
r

aB,
B,

+n

asz
B,

Insertion of the constants and introduction of

gives

1

)

2 aB,

+3;rMHY—~—uH] +0(a?)

nn-1) /aB,
P () ]+ 0w

b
I, =f (aHYe " de (k=0,1,2)

0= Cﬂl

5L
Iy

n+112

2n Tg+

2n

(3

1,
I

)]+om

O e a& H]+om%

(69)

70y

(71

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)
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4.3 The statistical properties of the displacement rate
The statistical properties of # can be deduced with the aid of

b

EU) = [ ElaH1E " dg = al, 81)
b

E(L] = f El(aH)Y )¢ 72" d¢ = 2aly+ O(a?) (82)

y b b
EUA= [ [ ElaHig)aH @ e g, de.. (83)
By definition

ElaH (r)yaH(r:)] = Roulry— ). (84)

Insertion of the autocorrelation from eqn (5) yields

E{1}=2al*V[B(b — a)]+ O(a?) (85)
where
xlk—1) pxiix—1)
4 [T sy ag, agy
_ — _JUx=1 Jfe-1)
VIB(b —a)] kDT -x 77 (86)
and

k =bla. 87

The variance of I, I, and I;? is deduced from eqns (81)~(85)

Var [I,] = 2al?V + O(a?) (88)
Var [LL] = O(a?) (89)
Var [1,7] = O(a?). (90)
Thus
E[a]=%’{1+a[l—%1(l—V)]}+0(a2) 9
Var [i] = (%)baw O(a?). 92)

The expected value and variance are always smaller for the structure than for the simple
specimen with load (Co/r)''" and length «~""(b — a). This enables conservative design.

The structural geometry factor V can be read from Fig. 4. The close similarity between the
bottom curves of Figs. 3 and 4 should be noted. This indicates that similar results may be
expected for other simple redundant structures.

5. DISCUSSION

Inhomogeneous creep properties have been considered in order to describe the observed
scatter in structural creep deformation rates. Norton's creep law has been formulated as a
stochastic process. The inhomogeneity has been described as a random variation of material
properties in one principal direction only. This simplification may often be justified by the
manufacturing process of the structural elements. The inhomogeneity also may appear due to a
random temperature field.
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Fig. 4. Structural geometry factor.

The stresses and deformation rates of two simple hyperstatic structures, viz. a two-bar
system and a thick-walled cylinder, under steady state creep have been determined. The
influence of the local variations of the material properties on the expected values and variances
of the deformation rates have been analysed. A structural shape and size effect have been
shown to exist, viz. the dependence of the scatter in material properties is decreased when the
structural redundancy and size is increased. The influence on the expected values is always
small, but the influence on the variances may be large. Estimations of the structural behaviour
from the simple specimen has been shown to be conservative as long as the specimen length
and load are correctly chosen.

It is possible, with the same technique, to consider multi-layered cylinders. A straightfor-
ward extension to creep with random material properties in all principal directions may be
done.
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